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ABSTRACT Local energy markets (LEMs) are utilized in a bottom-up power systems approach for reducing
the complexity of the traditional, centralized power system and to enable better integration of decentralized
renewable energy resources (RES). Peer-to-peer (P2P) energy trading creates opportunities for prosumers
to trade their RES with other prosumers in the LEM. Although several scenarios were proposed in the
literature for modelling P2P energy trading, there is still a gap in the literature considering the heterogeneous
characteristics of prosumers’ bidding preferences during P2P matching in the LEM. In this paper, we present
heterogeneous characteristics of bidding preferences for prosumers considering energy quantity, bid/offer
price, geographic location, location of agents on the local community and cluster welfare. Moreover, this
paper proposes an advanced clustering model for P2P matching in the energy community considering the
heterogeneous characteristics of bidding preferences for prosumers. For evaluating our proposed model
performance, twoGerman real case scenarios of a small and large communities were studied. The simulations
results show that using price preference, as the criterion for clustering, offers more technical and economic
benefits to energy communities compared to other clustering scenarios. On the other hand, clustering
scenarios based on location of prosumers ensure that energy is traded among prosumers who are closer
to each other.

INDEX TERMS Energy community, advanced clustering, local energy market, matching mechanism, peer-
to-peer trading.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
The transition from a fossil fuel-based centralized power sys-
tem to amore sustainable, low-emissions and renewable-based
system supported by the fast growth of distributed energy
resources (DER) add higher complexity to the power sys-
tem network [1]. Thus, because of the variability of the
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distributed energy resources, maintaining the reliability and
stability of the the power system grid becomes more chal-
lenging and complex with the decentralization of assets.
Local energy markets (LEMs) are introduced within the
past two decades as a means to sustain grid balances at the
distribution level and ensure that electricity is consumed
closer to where it is produced [2], [3]. LEMs are platforms
for trading locally sourced DERs among prosumers and
consumers within a geographic and social neighborhood
at the distribution level in a competitive and economic
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efficient way [4], [5]. Notwithstanding the numerous research
already conducted in the field of the LEM, predominant
market mechanisms have not yet been developed and the
LEM business model is still unclear [1]. Consequent to the
numerous advantages it promised, including the opportunity
for prosumers to decide whom to buy/sell their electricity
from/to, peer-to-peer (P2P) energy trading has been proposed
for local electricity trading by many researchers [6], [7].

B. LITERATURE REVIEW
P2P energy trading is a transactional structure which is based
on prosumers and consumers directly or indirectly negoti-
ating their electricity requirements to exchange electricity
among each other [8]. Inmost countries, the electricitymarket
is based on time series. Therefore, the consumers and pro-
sumers are required to consistently bid/offer and negotiate
their trade(s) every time slot to achieve a full P2P trading with
direct negotiation between consumers and prosumers. This
is time consuming and inefficient. Thus, modelling agents
and P2P matching algorithms considering prosumers’ energy
requirements, choices, preferences and price are developed.

In terms of negotiation, P2P energy trading can be clas-
sified into mediated and non-mediated P2P negotiations [9].
In a mediated P2P negotiation, a neutral mediator expedites
the mediation of the trade between the consumers and the
prosumers [10]. This can be based on a many-to-one P2P
negotiation between prosumers with an aggregator [11] or
a virtual agent as a mediator [12]. Authors of [13] pre-
sented a many-to-one P2P energy trading where the distri-
butions system operator mediates between prosumers and
consumers and uses a double auction mechanism to decide
the P2P winners of the auction. In a non-mediated or full
P2P trading, prosumers and consumers directly negotiate
with each other for electricity trading. This can be a one-
to-one negotiation between a buyer and seller or many-to-
many negotiation between all prosumers and consumers [10].
Ref. [14] proposed a one-to-one full P2P trading model
based on bilateral trading coefficients. The authors of [15]
proposed a many-to-many P2P energy trading model for
local energy and flexibility trading based on decentralized
negotiation.

Moreover, P2P energy trading can be classified based on
the matching or decision approaches. Different approaches
used for P2P energy trading are based on game-theory, algo-
rithms, optimization models and reinforcement learning [7].
Ref. [16] proposed Stackelberg game-based energy sharing
framework for P2P energy trading within in a multi-sharing
region. Ref. [17] proposed a P2P multi-energy market mech-
anism for electricity and heat trading based on cooperative
behaviors between the peers in an LEM. Authors of [18]
in their work proposed a model based on Nash bargaining
fair sharing of trading benefits for P2P energy trading in
interconnected LEMs. Ref. [19] proposed a two-tier P2P
trading model based on dual decomposition and distributed
consensus mechanism for a double layer hierarchical LEM.

The authors of [20] proposed a P2P model, based on P2P
coordination for energy. In recent research works, reinforce-
ment learning is used for P2P model. Ref. [21] proposed
a multi-agent deep reinforcement learning model based on
the combination of the multi-agent deep deterministic policy
gradient algorithm and technique of parameter sharing for
P2P energy trading. Their simulation study show that the
proposed model reduced daily electricity cost and demand
peak.

Additionally, recent researches in the field of LEM focused
on prosumers preference vectors. In order to consider and
satisfy LEM participants’ willingness, Ref. [22] proposed a
new auction-based LEM model that takes into account the
participants’ preferences and willingness to pay more for a
certain energy quality. The model promised to increase the
coverage of local demand and local supply compared to the
conventional periodic double auction mechanism. Authors
of [14] proposed LEM model which provide opportunity
for the prosumers to select their preferred trading partners
in a P2P LEM platform. The work of Ref. [21] is based
on grouping prosumers into different multiple clusters based
on the type of their distributed energy resources(DERs).
Ref. [23] proposed a two stage preference based merit-order
market mechanism for valuation between green, local, and
energy source. The model showed that different DERs supply
prosumers according to their willingness to pay and market
situation.

Clustering as an unsupervised learning algorithm is used
in most studies to identify similarities between set of large
data and group the large data into sets of smaller data
with similar properties. Clustering is recently used in P2P
energy trading to identify similarities in different groups of
microgrid, and for coordinating trades in LEM [24]. This
further results to proper decentralization of energy markets
and access to renewable energy resources [24]. Ref. [25]
proposed a virtual LEM that clusters prosumers daily based
on their load profiles. Ref. [26] in their work proposed a game
theoretic approach for clustering microgrids using particle
swarm optimization in a P2P energy trading system. The
concept of adaptive segmentation for P2P market clearing
was proposed by Ref. [27]. The model use balanced k-means
clustering algorithm to cluster energy players into differ-
ent segments to negotiate energy trading separately among
themselves.

The concept of clustering has been used mainly in power
markets for classifying loads and forecasting the future elec-
tricity demands of the users within a cluster [28]. Ref. [29]
used the known traditional K-means clustering to cluster
electricity customers demand in order to make a forecast
of the future customers load demand. Ref. [30] used the
K-means and Fuzzy C-means clustering algorithms to model
the electricity price time series patterns for forecasting future
electricity price. Ref. [31] developed a semi-supervised auto-
matic clustering algorithm based on a self-adapting metric
learning process for determining the household electricity
consumers demand patterns.
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C. CONTRIBUTION AND ORGANIZATION
The literature contains several studies proposing different
models for LEMs, P2P trading approaches, and prosumers
preference vectors for LEM design. However, there is still
a gap in literature concerning models considering the het-
erogeneous characteristics (i. e. preferences) of prosumers
within the bids/offers during P2P matching. In this paper,
we develop a non-mediated P2P matching model based on
advanced clustering model that simultaneously takes into
account the geographic location, location on the local com-
munity, bid/offer price, bid/offer quantity, and cluster welfare
for prosumers in the energy community. The literature [32],
[33], [34] contains several studies on clustering and applica-
tion of clustering in energy systems, however, this is the first
of its kind where clusters are built with developed weights
instead of the distance or values of the sets. Hence, in this
model, the developer can decide on a set of variables within
the multi set that is of more importance to him or her and
decide to manually give more weight to this variable before
the start of clustering. By doing so, themodel will perform the
clustering while considering that a certain variable is of more
importance to the model compared to others and therefore
perform according to this instruction. The model was imple-
mented on an interface and open source code-base of the Grid
Singularity Exchange to simulate, and optimize energy trad-
ing in local communities [35]. Furthermore, we evaluate the
model using performance indicators such as self-sufficiency,
self-consumption ratio, share of market savings and traded
energy quantity. Our model can be used for any multi set
functions where the user wishes to cluster multi variables
while attributing more importance to some variable com-
pared to others. Thus the application of the developed novel
clustering algorithm extends beyond LEM but also to other
applications where similar multi sets need to be classified.
The main contributions of the paper are summarized in the
following:

• Proposing an advanced clustering algorithm for group-
ing of heterogeneous characteristics of bidding pref-
erences for prosumers considering energy quantity,
geographic location, location on the community and
bid/offer price.

• Presenting novel P2P matching in energy communities
based on our proposed advanced clustering algorithm.

• Implementation of the proposed model in a real case
German community.

• Assessing the performance of our proposed P2P model
based on performance indicators for the LEM.

The remaining sections of this work are structured as follows.
Section II introduces clustering and the proposed advanced
clustering algorithm. The proposed LEM model is described
in Section III and sample discussion of the proposed model
with example presented in Section IV. The community set-
up, data and price components are presented in Section V.
Section VI discusses the results of our case studies and
the findings in details. Finally, the paper is concluded
in Section VII.

II. PROPOSED CLUSTERING ALGORITHM
A. INTRODUCTION TO CLUSTERING
Clustering is an unsupervised learning algorithm with the
objective of extracting underlying information of data sam-
ples and using the information to split the data into different
groups so-called clusters [36]. Clustering is usually used for
analyzing market research, pattern recognition, data analy-
sis, image processing and categorizing genes with similar
functionalities [37]. K-means clustering is one of the most
popular clustering algorithms used in data mining because
of its simplicity and computational efficiency [36], [38].
In K-mean clustering, the Euclidean1 is used as a means
to measure data that are nearby each other and as a
means for determining the centroid for group of unlabelled
data [38]. Hence, K-means clustering uses a local search to
group the data sample by first; randomly selecting k points
{µ1, . . . , µk} as the corresponding initial centers for k clus-
ters, then optimizing them iteratively until the objective func-
tion (Eq. 3) is minimized [39]. Supposed we have a multi-set
of d-dimensional vector, X, then,

X = {x1, x2, . . . , xp}, (1)

where p is number of observations and xp is the p-th obser-
vation. The objective of K-means clustering is to clus-
ter the p observations into k multi-sets of homogeneous
clusters by minimizing the objective function represented
by Eq. (3) [39], [40].

S = {s1, . . . , sk}, (2)

J =

k∑
i=1

∑
xj∈Si

||xj − µi||
2
2, (3)

Here, the number of clusters should be less than or equal
to the number of observations (k ≤ p). Moreover, xj is the
j-th observation belonging to si as i-th cluster. It is notice-
able that in K-means clustering algorithm, the number of
clusters must be defined initially. Hierarchical clustering is
another popular clustering algorithm used recently in data
mining. Hierarchical clustering algorithm consist of nested
partitions in which homogeneous observations are grouped
by recursively clustering only two observations at a time [41].
Unlike K-means clustering algorithm that has fixed number
of clusters, the number of clusters in hierarchical clustering
changes in every iteration cycle [42]. Hierarchical clustering
is classified into agglomerative and divisive clustering algo-
rithms which can simply be explained as bottom-up and top-
down approaches of the clustering, respectively [42]. In an
agglomerative clustering approach, the algorithm begins with
a singleton observation by pairing similar clusters at each
iteration. This process is repeated every iteration until all
observations are included into a single cluster or a defined
criterion is met [41]. On the other hand, in divisive cluster-
ing approach, clustering begins with one big cluster obser-

1Euclidean in this context is the study of solid geometry based on the work
of Euclid and the corresponding elementary geometry.
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vation and breaks down into clusters consisting of smaller
observations in a hierarchical top-down manner. Thus, for
p number of observations grouped into q sets of clusters,
{c1, c2, . . . , cq}, using hierarchical clustering, it is given that

{cj ⊂ ci} | {ci ⊂ cj} | {ci ∩ cj} = ∅, ∀i ̸= j, (4)

hence, it is either one of clusters i and j is a subset of the other
one hierarchically, or a disjoint of it [43].

In hierarchical clustering, different linkage criteria such
as single linkage, complete linkage, unweighted pair group
method average, the weighted pair group method average,
the unweighted pair group method centroid, the weighted
pair group method centroid, and the ward linkage are used
to measure the distance between two clusters [44]. For the
single linkage, the similarity between two clusters depends
on the closest pair of members in the two clusters. Therefore,
the closeness of the pairs in terms of distance are considered.
However, for complete linkage, the similarity between two
clusters depends on the farthest pair of members in the two
clusters. Therefore, farther pairs are grouped first. For the
unweighted pair group method average, the average distance
between all individual clusters is calculated and clusters with
the least average distance are joined to form the next hier-
archy [44], [45]. For a weighted pair group method average,
the hierarchical clustering are formed by joining to nearby
clusters, the distance between the new formed cluster and
any other cluster is the arithmetic mean of the average dis-
tances between members of the formed cluster and any other
cluster [34]. The unweighted pair group method centroid is
similar to unweighted pair group method average, however,
for unweighted pair group method centroid, the proximity
between two clusters is the proximity between their geometric
centroids. Also, the weighted pair group method centroid is
similar to weighted pair group method average, however, for
weighted pair group method centroid, the proximity between
two clusters is the proximity between their geometric cen-
troids [33], [34]. For the wards linkage, two clusters are
joined to form a hierarchy once they minimize the increase
of sum of square error [34], [44], [45]. For instance in [32],
the the unweighted pair average distance and ward linkage
methods were used for grouping the clusters. In [33], the
single linkage criterio was used. In [34], the single linkage,
complete linkage, unweighted pair group method average,
the weighted pair group method average, the unweighted
pair group method centroid, the weighted pair group method
centroid, and the ward linkage were used and compared.

B. ADVANCED CLUSTERING ALGORITHM
In this section, a novel advanced clustering algorithm is pro-
posed. Theoretically, the proposed advance clustering algo-
rithm is derived by combining k-means and agglomerative
clustering algorithms. In this way, two different multi-sets, X
andW, of d-dimensional vectors each withN andM number

of observations, are given in Eqs. (5) and (6), respectively.

X = {x1, x2, . . . , xN } (5)

W = {w1,w2, . . . ,wM} (6)

1) STAGE I: INITIAL CLUSTERING
First, the sets from (5) and (6) are clustered into K and U
number of homogeneous sets, by minimizing (7) and (8),
respectively.

J x =

K∑
k=1

∑
xy∈cxk

||xy − µk ||
2
2, (7)

Subject to:
K ≤ N ,

Jw =

U∑
u=1

∑
wg∈cwu

||wg − µu||
2
2, (8)

Subject to:
U ≤ M.

Here, xy and wg are the y-th and g-th sets from the obser-
vations X and W, belonging to the k-th and u-th clusters,
cxk and cwu , respectively. Hence, µk and µu are the initial
cluster points for sets X and W as given in (5) and (6),
respectively. Eq. (9) and (10) represent the solutions for (7)
and (8), respectively.

Cx = {cx1, c
x
2, . . . , c

x
k}, (9)

Cw = {cw1 , cw2 , . . . , cwu }, (10)

where c1x to ck x and c1w to cuw represent the selected homo-
geneous clusters for sets X and W, respectively.

2) STAGE II: HIERARCHICAL CLUSTERING BASED ON
LINKAGE CRITERIA
The homogeneous clusters from (9) and (10) are further clus-
tered by determining the individual heterogeneous features
of the clusters elements and pairing them one after the other,
hierarchically. This is achieved by solving the optimization
problem given in (11).

(cxk∗ , cwu∗ ) = argmax
∑

cxk∈C
x ,cwu ∈Cw

ωk,u(cxk , c
w
u ) (11)

where cxk∗ and cwu∗ are clusters selected from Cx and Cw,
respectively, as solution of (11). Moreover, ωk,u is the
chosen metric which is derived based on the properties of
the d-dimensional observation sets X and W. To solve the
optimization problem, Eq. (11) is reduced to Eq. (12) to
compute the weighted linkage ω∗, and (12), and (11) are
solved iteratively until (9) and (10) are reduced to a single
cluster.

ω∗
= max{ωk,u(cxk , c

w
u ) : cxk ∈ Cx , cwu ∈ Cw} (12)

The pseudocode of our proposed advanced clustering is
represented in Algorithm 1. The output R1,R2, . . .RN ∗ is
the result of matching two clusters cxk∗ and cwu∗ obtained as
solution to Eq. (11).
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Algorithm 1 Advanced Clustering Algorithm
Require: X ={x1, x2, . . . , xN }, W ={w1,w2, . . . ,wM}.
Output:{R1,R2, . . .RN ∗}
Solve: Eq. (7) and Eq. (8), to obtain Cx ={cx1, c

x
2, . . . c

x
k} and

Cw ={cw1 ,ww2 , . . . cwu }

while (size(Cx x Cw) >1) do
Determine: ω∗ from Eq. (12)
Solve: Eq. (11) with solution from Eq. (12)
Merge: Merge clusters of Eq. (9) and (10) based on
solution from Eq. (11)

end while

III. PROPOSED P2P MARKET MODEL
In this Section, our proposed P2P market model is presented.
In the first step, each prosumer submits its offers and bids
at each time slot to the energy community framework as
shown in Fig. 1. Then, prosumers are clustered based on
the proposed advanced clustering algorithm. P2P matching
among prosumers occurs and the cluster weight matrix is
updated. This process is repeated in the next time slot until
end of the market as shown in Fig. 2. The motivation of
clustering prosumers and consumers in P2P energy trading
is to reduce mismatch during P2P matching, create cluster
of markets where the members of the clusters have similar
features and further reduce imbalance in the local community.
By clustering prosumers, we reduce the big local market
into smaller groups of markets. The participants in each of
these smaller groups have similar features/properties, thereby
creating opportunity for more bids and offers to be matched
in the group levels which will lead to efficient LEM. Also,
by creating clusters of members with the similar load pro-
files, the market reduce imbalance in the local community
and ensure that more energy is matched at local level and
that grid instability is reduced. Moreover, by creating clusters
with similar bidding/offering strategies, the model ensure that
there is no mismatch during the market clearing of bids and
offers. Because of the establishment of previous works [6],
[46], [47] in this area that P2P market for LEM trading offers
economic and technical benefits to the LEM participants
compared to merit order clearing mechanism, we use the P2P
trading for our model. Also, P2P trading gives opportunity
for consumers and prosumers to say how much they are
willing to pay/receive per kW of their electricity thereby
engaging both producers and consumers in the market which
is the major idea of LEM unlike the merit order where only
the producers gives their cost price and market is matched
based on this. Also, P2P energy trading provides opportunity
for more energy to be traded within the local community
compared to merit order clearing mechanism.

A. STAGE I: BIDDING AND OFFERING BY PROSUMERS
For the proposed LEM model, the prosumers submit their
bids and offers as a set of prosumers’ preferences at each
time slot to the local electricity market framework. Eq. (13)

represents the bid of buyer i at time slot t .

bi,t = [pbi,t , q
b
i,t , l

g
i , l

d
i ], ∀i, t, (13)

where, bi,t represents the bidding vector of buyer i at time t
which contains energy quantity (qbi,t ), bid price (pbi,t ), geo-
graphic location (lgi ) of the buyer i in terms of latitude and
longitude, and the location (ldi ) of the buyer i in energy
community. The location of the buyer, which is a prosumer
in the energy community, is the area location consisting of
the building block, street, zone and/or district location of
the buyer. Hence, while lgi represents the distance location
of the buyer, ldi represents the particular community the
buyer belongs out of the energy communities located inside
the LEM. Similar to Eq. (13), Eq. (14) represents the offer of
seller j at time slot t .

sj,t = [psj,t , q
s
j,t , l

g
j , l

d
j ], ∀j, t, (14)

where, sj,t represents the offering vector of seller j which
contains the energy quantity (qsj,t ), the offer price (psj,t ), the
geographic location (lgj ) of the seller, and the location (ldj )
of the seller on the energy community. Similar to buyers,
lgi represents the distance location of the seller, and ldi rep-
resents the particular community the seller belongs out of
the energy communities located inside the LEM. Thus, the
bidding/offering vectors submitted by buyers /sellers to the
LEM frame work at time slot t are represented by (15) and
(16), respectively.

Bt = {b1,t , b2,t , . . . , bN ,t }, ∀t, (15)

St = {s1,t , s2,t , . . . , sM,t }, ∀t, (16)

where Bt and St represent bidding and offering vectors,
respectively. Moreover, N andM express number of buyers
and sellers, respectively.

B. STAGE II: ADVANCED CLUSTERING OF BIDS AND
OFFERS
1) STEP I: INITIAL CLUSTERING
After bidding and offering vectors are submitted to the
LEM framework, they are clustered based on the pro-
posed advanced clustering algorithm. This way, similar to
K-means clustering algorithm, bidding and offering vectors
are defined as multi-sets and are clustered independently
based on the defined criterion by minimizing Eqs. (17)
and (18), respectively:

Jbt =

K∑
k=1

∑
bf ,t∈cbk,t

||bf ,t − µk,t ||
2
2, (17)

Subject to:
K ≤ N .

J st =

U∑
u=1

∑
sg,t∈csu,t

||sg,t − µu,t ||
2
2, (18)

Subject to:
U ≤ M.
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FIGURE 1. Proposed (a) LEM design and (b) P2P market model.

FIGURE 2. Flowchart of the proposed P2P market model.

According to Eqs. (17) and (18), K and U are the number
of clusters for the bids and offers, respectively. The number
of defined bidding clusters K, must be less than or equal
to the total number of bids at time step t . Also, the number of
the defined offering clusters U , must be less than or equal to
the total numbers of offers at time step t . Besides, bf ,t and sg,t

are the f -th bid and g-th offer, belonging to the k-th and u-th
clusters, cbk,t and c

s
u,t , respectively. Moreover, µk and µu are

the initial cluster points for bids and offers, respectively. The
initial cluster points are selected randomly and minimization
of Eqs. (17) and (18) is performed iteratively until the optimal
cluster points are determined. Thus, for initial k-th cluster of
bids and u-th cluster of offers, it is given:

cbk,t = {bk1,t , . . . , b
k
nk ,t }, ∀t, (19)

csu,t = {su1,t , . . . , s
u
mu,t }, ∀t, (20)

where nk is the number of bids belonging to k-th cluster of
bids, cbk,t , which have similar homogeneous features based
on the clustering criterion at time step t . Similarly, mu is
the number of offers belonging to u-th cluster of offers, csu,t ,
which have similar homogeneous features based on the clus-
tering criterion at time step t . In our proposedmodel, different
criterion are defined for clustering bids and offers based
on the elements of bids and offers submitted by prosumers,
as represented by Eqs. (13) and (14), respectively, and cluster
welfare. For a buyer i in cbk,t and seller j in csu,t at time
slot t , with bid and offer as represented by Eqs. (13) and (14),
respectively, the welfare (π) of the pair is represented
in Eq. (21),

π =


(pbi,t − psj,t ) × qsj,t : q

b
i,t = qsj,t

(pbi,t − psj,t ) × qsj,t : q
b
i,t > qsj,t

(pbi,t − psj,t ) × qbi,t : qbi,t < qsj,t

 , pbi,t ≥psj,t , ∀i, j, t.

(21)

For pairs with pbi,t < psj,t , the welfare is not considered since
there will not be matching of such pairs even after clustering.
The social welfare of the clusters in Eqs. (19) and (20) termed
cluster welfare is represented in Eq. (22). Hence, for our
model, cluster welfare means social welfare of the clusters
and not the social welfare of the local community. Hence,
hierarchical clustering with cluster welfare as the chosen
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metric criterion means clustering pairs with higher π∗ using
the hierarchical clustering algorithm/method in the next step.

π∗ =

nk∑
i=1

mu∑
j=1

πi,j, (22)

Additionally, Eqs. (23) and (24) represent the the set of all
initial clusters for bids and offers:

Cbt = {cb1,t , . . . , c
b
k,t }, ∀t, (23)

Cst = {cs1,t , . . . , c
s
u,t }, ∀t, (24)

where c1,t b to ck,t b and c1,t s to cu,t s represent the selected
homogeneous initial clusters of bids and offers at time
step t resulting from Eqs. (17) and (18), respectively.
Eqs. (25) and (26) show that the selected initial clusters in
Eqs. (23) and (24) are from the bids and offering vec-
tors of buyers and seller represented in Eqs. (15) and (16),
respectively.

Bt = {cb1,t ∪ . . . ∪ cbk,t }, ∀t, (25)

St = {cs1,t ∪ . . . ∪ csu,t }, ∀t. (26)

2) STEP II: HIERARCHICAL CLUSTERING BASED ON LINKAGE
CRITERIA
After initial clusters obtained by Eqs. (23) and (24), bids and
offers are clustered hierarchically. Thus, initial clusters are
inputs for the hierarchical clustering stage and its optimiza-
tion problem represented by (27):

(cbk∗,t , c
s
u∗,t ) = argmax

∑
cbk,t∈C

b
t ,c

s
u,t∈C

s
t

ωk,u,t (cbk,t , c
s
u,t ), ∀t, (27)

where cbk∗,t and c
s
u∗,t are clusters selected from Cbt and Cst ,

respectively. Moreover, ωk,u,t is the chosen metric and is
defined as the weight for clustering pair of bidding cluster k
and offering cluster u into a single cluster at time slot t .
Accordingly, � is defined as a chosen weight matrix as
represented in Eq. (28).

�k×u,t =

ω1,1,t . . . ω1,u,t
...

. . .
...

ωk,1,t . . . ωk,u,t

 , ∀t. (28)

For reducing the computational burden, Eq. (27) can be
restated as given in (29) and (30):

ω∗
t = max{ωk,u,t (cbk,t , c

s
u,t ) : cbk,t ∈ Cbt , c

s
u,t ∈ Cst }, ∀t,

(29)

(cbk∗,t , c
s
u∗,t ) = arg(ω∗

t ), ∀t, (30)

where ω∗
t is the linkage criteria and is defined as the maxi-

mum value of the weighted linkage from the chosen weight
matrix represented in Eq. (28). From (28), the chosen metric
criteria, ωk∗,u∗,t , is defined as sum of the average weights
of bidding and offering elements including bid and offer
prices, energy quantity, location of the prosumers on the local

community for bids and offers clusters combination of cbk∗,t
and csu∗,t , respectively, which are given in (31):

ωk∗,u∗,t = ω
p
k∗,u∗,t + ω

q
k∗,u∗,t + ωl

k∗,u∗ . (31)

From (31), ω
p
k∗,u∗,t is the average price weight for possible

matching bidding cluster, cbk∗,t , and offering cluster, csu∗,t ,

as represented in the price weight matrix of (32) and given
in (38).

ω
p
k∗,u∗,t =


wp1,1,t . . . wp

1,mu∗ ,t
...

. . .
...

wp
nk∗ ,1,t

. . . wp
nk∗ ,mu∗ ,t

 , ∀t, (32)

where nk
∗

and mu
∗

are number of bids and offers in bidding
cluster, cbk∗,t , and offering cluster, csu∗,t , respectively. More-
over, wpi,j,t is the price weight for matching bid bi,t belonging
to k∗-th bidding cluster and offer sj,t belonging to u∗-th
offering cluster at time slot t as represented by (33),

wpi,j,t =


2: pbi,t = psj,t
1: pbi,t > psj,t
-1: else

 , ∀i, j, t. (33)

From Eq. (33), a bid and an offer pair with equal bidding and
offering price has the maximum weight which is 2, because,
this pair provide the maximum satisfaction to both prosumers
considering their bid and offer preference price. This pair
also provide the maximum welfare for the both pairs while
considering the bid/offer price of the prosumers. Therefore,
giving the maximum price weight to prosumers with the
same bid/offer price will ensure that more energy is traded
within the community. For a bidding price greater than the
offering price, the price weight is 1, because, this bid and
offer pair provide less price preference satisfactions to both
prosumers compared to the former. For a bidding price less
than the offering price, the price weight is−1 because the bid
and offer pair does not satisfy the sellers requirements and
validation requirements and consequently, this bid and offer
pair cannot match. This negative weight reduce the possibility
of matching the bid and offer pair with sellers offer price
greater than the buyers bid price.

Moreover, ω
q
k∗,u∗,t andωl

k∗,u∗ represent weights of average
energy quantity and location for possible matching of bidding
cluster, cbk∗,t , and offering cluster, c

s
u∗,t , as represented by (34)

and (36), respectively.

ω
q
k∗,u∗,t =


wq1,1,t . . . wq

1,mu∗ ,t
...

. . .
...

wq
nk∗ ,1,t

. . . wq
nk∗ ,mu∗ ,t

 , ∀t, (34)

where wqi,j,t represents the energy quantity weight of a buyer i
and seller j belonging to clusters cbk∗,t and c

s
u∗,t , respectively,

as given by (35):

wqi,j,t =

{
2: qbi,t = qsj,t
1: else

}
, ∀i, j, t. (35)
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From Eq. (35), bid and offer pair with equal bidding and
offering energy quantity has the maximumweight which is 2,
because, this pair provides the maximum energy quantity
preference satisfaction to both prosumers considering their
bid and offer energy quantity. Thus, there is high proba-
bility that the buyer and seller will trade all their energy
requirements with each other without requesting for another
prosumer to take care of their energy requirements that is
not satisfied by their pair. For pair with bidding energy
quantity greater than the offering energy quantity or offering
energy quantity greater than the bidding energy quantity, the
price weight is 1, because, this bid and offer pair provide
less energy quantity preference satisfactions to one of the
prosumers unlike the former that provide maximum energy
quantity preference satisfaction to both prosumers. Also, the
prosumer with higher energy quantity requirements will still
be paired in the next iteration meaning that all the energy
requirements cannot be satisfied with the pair and hence, the
reason for lesser energy quantity weight.

Additionally, Eq. (37) represents the location weight (wli,j)
of a buyer agent i and seller agent j belonging to clusters cbk∗,t
and csu∗,t , respectively.

ωl
k∗,u∗ =


wl1,1 . . . wl

1,mu∗

...
. . .

...

wl
nk∗ ,1

. . . wl
nk∗ ,mu∗

 , (36)

wli,j =


4: {li ∪ lj} ⊂ lb

3: {li ∪ lj} ⊂ le

2: {li ∪ lj} ⊂ lz

1: {li ∪ lj} ⊂ lc

0: else

 , (37)

where lb, le, lz and lc represent apartment block, estate, zone
and local community, respectively. In other words, Eq. (37)
expresses that the closer the seller and buyer are on the local
community, the higher their location weight.

Thus, the average weight for all bidding/offering elements
is determined by Eq. (38):

ω
(.)
k∗,u∗ =

1
nk∗

× mu∗

nk
∗∑

i=1

mu
∗∑

j=1

w(.)
i,j, (38)

where w(.)
i,j can be weight for price (p), energy quantity (q)

and location (l). In this way, the average weights calculated
by Eq. (38) will be the inputs of (31).

3) STEP III: P2P MATCHING OF CLUSTERED BIDS AND
OFFERS
After prosumers are clustered in bid and offer clusters sep-
arately, P2P matching occur among prosumers which their
bids and offers belong to the selected clusters. This way,
considering cbk∗,t and c

s
u∗,t are selected as optimum bidding

and offering clusters from Eq. (30) which are represented by

Eqs. (39) and (40), respectively.

cbk∗,t = (bk1,t , . . . , b
k
nk∗ ,t

), ∀t, (39)

csu∗,t = (su1,t , . . . , s
u
mu∗ ,t

), ∀t, (40)

where cbk∗,t contains n
k∗

number of bids and csu∗,t contains n
u∗

number of offers at time t . Besides, bid i and offer j are vectors
consisting of their corresponding bidding and offering ele-
ments as represented by Eqs. (13) and (14). Thus, prosumer i
as a potential buyer and prosumer j as a potential seller are
eligible to negotiate with each other directly for making P2P
transaction because they belong to clusters cbk∗,t and csu∗,t ,
respectively. Hence, the matching among prosumers i and j
can occur if Eqs. (41) and (42) as P2P validation criteria are
satisfied.

pbi,t ≥ psj,t + gli,j,t , ∀i, j, t, (41)

(ldi ⊂ l) ∧ (ldj ⊂ l) = 1, ∀i, j, (42)

where gli,j,t represents grid fee of P2P energy transaction
among prosumers i and j in the local community l where lj
and li exist. In other words, the grid fee is amount of money
in cent/kWh which the paired prosumers i and j pay for using
the local grid for energy exchange in the energy community
l. Eq. (43) represents the community grid fees,

gli,j,t =


gl

b

t : {li ∪ lj} ⊂ lb

gl
e

t : {li ∪ lj} ⊂ le

gl
z

t : {li ∪ lj} ⊂ lz

gl
c

t : {li ∪ lj} ⊂ lc

gl
u

t : else

 , ∀i, j, t, (43)

where gl
b

t , g
le
t , g

lz
t , g

lc
t and gl

u

t represent grid fees for apartment
blocks, estates, zones, local community and the upstream
grid, respectively. Each grid fee is the combination of meter-
ing fee (gm), local grid fee (gi,j,t ), upstream grid fee (gut ) and
19% value-added-tax (VAT) as represented in Eq. (44)

gl
∗

t =gm+gi,j,t+gut +0.19×(pp2pi,j,t+g
m
+gi,j,t+gut ); ∀i, t,

(44)

If Eqs. (41) and (42) are satisfied among prosumers i and j,
the selected pair of bid i and offer j are matched. Thus, qi,j,t
and pp2pi,j,t represent matched P2P energy quantity and price
between buyer i and seller j at time slot t which are given in
(45) and (46), respectively.

qi,j,t =

{
qbi,t : qsj,t > qbi,t
qsj,t : else

}
, ∀i, j, t, (45)

pp2pi,j,t =
psj,t + pbi,t

2
, ∀i, j, t, (46)

pbi,j,t = pp2pi,j,t +
gli,j,t
2

, ∀i, j, t, (47)

psj,i,t = pp2pi,j,t −
gli,j,t
2

, ∀i, j, t, (48)
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where pbi,j,t is the bought price for buyer i to trade P2P energy
with seller j, and psi,j,t is the sold price for seller j to trade P2P
energy with buyer i at time slot t as represent by Eqs. (47)
and (48), respectively. After P2P matching between seller i
and buyer j, the bid and offer are updated by subtracting
the matched energy quantity from the submitted bid/offer
quantity as represented in (49) and (50), respectively.

qb
′

i,t = qbi,t − qi,j,t ; ∀i, t, (49)

qs
′

j,t = qsj,t − qi,j,t ; ∀j, t, (50)

where qb
′

i,t and q
s′
j,t is the deficit/excess bid and offer energy

quantity for buyer i and seller j respectively, after P2P match-
ing between them. In case, the selected bid and offer does
not satisfy constraints (41) and (42), another bid and offer
pair (bi∗,t and sj∗,t ) are selected according to (51) and (52),
respectively.

bi∗,t = [pbi∗,t , q
b
i∗,t , l

g
i∗ , l

d
i∗ ]; {bi∗,t ⊂ cbk∗,t , i

∗
̸= i}, ∀t,

(51)

sj∗,t = [psj∗,t , q
s
j∗,t , l

g
j∗ , l

d
j∗ ]; {sj∗,t ⊂ csu∗,t , j

∗
̸= j}, ∀t.

(52)

Eqs. (51) and (52) imply that bids and offers paired earlier
cannot be paired again in the same time slot, t . The proposed
matching process from Eqs. (39) to (52) is repeated until all
the bids and offers are selected.

4) STEP IV: UPDATING THE CHOSEN WEIGHT MATRIX
After matching bidding and offering clusters cbk∗,t and c

s
u∗,t ,

respectively, according to Section III-B3, the chosen weight
matrix will be updated. In this way, if all energy quantity of
both bid i and offer j are fully matched, the chosen weight
matrix is updated as given in Eq. (53) by deleting the cor-
responding bid’s column and offer’s row stated in Eq. (28).
In other words, Eq. (28) is reduced to Eq. (53) by deleting
matched bidding cluster, cbk∗,t , and offering cluster, c

s
u∗,t , from

Eqs. (23) and (24), before solving (27) in the next iteration.

�k×u,t =

 ω1,1,t . . . ω1,u−1,t
...

. . .
...

ωk−1,1,t . . . ωk−1,u−1,t

 , ∀t. (53)

However, if only the offered energy quantity of the cluster
csu∗,t is fully cleared while the bid energy quantity of cbk∗,t is
not cleared completely, then Eq. (28) is updated to (54) by
deleting the corresponding offer’s row stated in Eq. (28).

�k×u,t =

ω1,1,t . . . ω1,u−1,t
...

. . .
...

ωk,1,t . . . ωk,u−1,t

 , ∀t. (54)

On the other hand, if only the energy quantity of the
bid cluster cbk∗,t is cleared completely, Eq. (28) is updated
to Eq. (55) by deleting the corresponding bid’s column stated

in Eq. (28).

�k×u,t =

 ω1,1,t . . . ω1,u,t
...

. . .
...

ωk−1,1,t . . . ωk−1,u,t

 , ∀t. (55)

Finally, if there are unmatched energy quantities of bid and
offer within both (cbk∗,t and c

s
u∗,t ) clusters, the size of Eq. (28)

remains unchanged. However, matched bids and offers are
deleted leaving unmatched ones. Then the chosen weight
matrix from Eq. (28) is computed again based on Eqs. (32),
(34) and (36), and used to solve Eqs. (29) and (27). The pro-
cess is repeated until the chosen weight matrix, represented
in Eq. (28), forms a single matrix in which the input clusters
cannot satisfy the matching criterion described in Eqs. (41)
and (42), or all the bids and offers are fully matched. All
deficit/excess bids and offers which are not cleared in the
local energy market, will be traded with the utility using
the upstream-grid price. The pseudocode and flowchart of
our proposed advanced clustering approach for a single time
slot t is shown in Algorithm 2 and Fig. 3, respectively. From
Algorithm 2, R1,R2, . . .RN ∗ is the output of the algorithm
which is the result of matching two clusters cbk∗,t and c

s
u∗,t

based on Eqs. (39) to (52).

Algorithm 2 Advanced Clustering Algorithm
Require: Bt ={b1,t , b2,t , . . . , bN ,t}, St
={s1,t , s2,t , . . . , sM,t}. ▷ Bids and offers

Ensure: Mcriterion = True ▷ All bids and offers contain no
zero or empty set

Output:{Rb,s1 ,Rb,s2 , . . .Rb,sN ∗}
Solve: Eq. (17) and Eq. (18), to obtain Cb

t ={cb1,t , . . . , c
b
k,t}

and Cs
t ={c

s
1,t , . . . , c

s
u,t}

while (Mcriterion = True | (size(Cb
t x Cs

t ) >1)) do
Calculate: Eq. (28)
Determine: ω∗ and (cbk∗,t , c

s
u∗,t ) from Eqs. (29) and

(30), respectively.
Matching: Match the clusters (cbk∗,t , c

s
u∗,t ) based on

Eq. (39) to (52).
if : All (cbk∗,t & csu∗,t ) are matched then

Reduce Eq. (28) to Eq. (53);
else if : All (csu∗,t ) are matched then

Reduce Eq. (28) to Eq. (54);
else if : All (cbk∗,t ) are matched then

Reduce Eq. (28) to Eq. (55);
else:

Delete individual matched bids and offers;
end if

end while

IV. PROPOSED P2P MARKET MODEL DISCUSSION
In this Section, our proposed P2P market model is described
with a simple example to illustrate how bids and offers are
clustered and matched according to prosumers’ preferences.
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FIGURE 3. Flowchart of the proposed advanced clustering model.

Table 1 displays the sample of prosumers’ bids and offers
containing the prosumers preference vector for a single time
step. The preference vector contains the prosumer’s identifi-
cation (ID), bid/offer price, energy quantity, geographic loca-
tion and location of the prosumer on the energy community.
The geographic location is the location of the prosumer in
terms of latitude (La) and longitude (Lo). On the other hand,
location of the prosumer in the energy community contains
the its zone, estate and building block. According to Table 1,
there are two zones consisting of zone A (ZA) and zone B
(ZB). Moreover, there are three estates namely yellow (YE),
ash (AS), and orange (OR), and six building blocks B1 to
B6. In this way, as shown in first row of Table 1, ZA-YE-B1
means that the prosumer 1 belong to zone A, yellow estate
and B1.

Fig. 4 displays the clustering and matching of the sample
bids and offers of Table 1 based on the proposed P2P market
model using advanced clustering algorithm. The bids and
offers are arranged according to the bidding/offering price
and energy quantity as shown on the lowest level of Fig. 4.
The bids are b1 to b5, and the offers are s1 to s4. In the next
level, bids and offers are clustered based on the initial cluster-
ing algorithm described in Section III-B1 with cluster welfare

as the clustering criterion. The number of clusters for bids and
offers are set as two for each of them. The initial clusters is
shown on the second level from the bottom layer of Fig. 4. For
the bids, the initial clusters are represented by cb1 and c

b
2, while

the initial clusters of offers are represented by cs1 and cs2.
Afterward, first two optimal clusters are selected from the
four initial clusters by solving Eq. (27). In this sample, the
first selected optimal clusters are cs1 and cb2. This way, bids
and offers within these selected clusters arematched using the
matching algorithm described in Section III-B3 and forms a
single cluster cs2,1 after matching. During matching, the first
negotiation is between prosumers b4 and s4 because of their
close price and energy quantity preference. Consequently,
2.85kWh is traded between both prosumers at 23.75 ct./kWh.
Hence, b4 is fully matched while s4 is partially matched with
a left over of 0.16kWh. In the same way, b5 and s3 negotiate
to exchange 3.12kWh at 24.15ct./kWh. This results in s3 been
fully matched and b5 been partially matched with a left over
of 0.08kWh. Then, b5 and s4 negotiate to trade their left over.
This results in 0.08kWh been traded among b5 and s4 at
25.5 ct./kWh. Hence, b5 is now fully matched while s4 is
partially matched with a left over of 0.08kWh. Consequently,
the formed single cluster contains two offers s2 and s4. While
s4 is partially matched, s2 is not matched at all. Here, cs2,1 rep-
resents a combined cluster of bidding cluster cb2 represented
by first subscript 2, and offering cluster cs1 represented by
second subscript 1 and they both formed an offering cluster
represented by superscript s. The fist hierarchy now contains
three clusters namely cs2,1, c

s
2 and cb1. For the next iteration,

two clusters are selected from three clusters in the first hier-
archy by solving Eq. (27) and are termed second selected
optimal clusters. The second selected optimal clusters are
cs2,1 and cb1. Bids and offers within these selected clusters
are matched using the same matching algorithm described
in Section III-B3 and forms a single cluster cb1,(2,1) after
matching. cb1,(2,1) contains only one bid, b1, which is partially
matched. At this stage, only two clusters consisting of cs2
and cb1,(2,1) are left and form the second hierarchy. These two
clusters are selected and matched to form the single cluster
cs(1,(2,1)),2 which contains a single offer s1 that is partially
matched. In this way, the final cluster, cs(1,(2,1)),2, will trade
with the upstream grid using the upstream grid price as it was
not able to match in the local community.

Thus, our model considers similarities based on bid-
ding/offering prices and load profiles. This way, two pro-
sumers in an LEM with similar profiles will be able to trade
P2P energy with each other. If the bidding price of the buyer
is less than the offering price of the seller, there will be no
matching notwithstanding the similarities in the load profiles.
This shows the importance of bidding/offering price in an
LEM. Bidding/offering price just likes prosumer profiles has
effect in LEM trading which if not considered will lead
to mismatch in trading and further result in trading with
the upstream grid thereby making the market uneconomical
and even cause grid instability. As our trading time step
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TABLE 1. Prosumers bid/offer preferences.

FIGURE 4. Clustering of bids/offers based on our proposed advanced
clustering.

(15 minutes) is very short, uncertainty was not considered as
it does not have high impact on the LEM. In the LEM, pro-
sumers are allowed to take strategic actions that will benefit
them and the market. However, they are not allowed to take
actions that will result in inequality.

Clustering brings together prosumers into pools of their
fellow prosumers where they all posses similar characteris-
tics. This results in reducing mismatch in the LEM as clusters
contain pairs with similar bidding/offering preferences which
is used for the P2P matching. Clustering further ensures that
more energy is traded at the local levels and creates more
local economy for energy community. Hence, considering
heterogeneous characteristics of prosumers is relevant to the

economic goal of social welfare which is mainly creating
additional savings for the local participants. This additional
savings results in increase in the share of market savings of
the local prosumers participating in the local energy trad-
ing. Moreover, clustering is based on considering the social
welfare of clusters as defined in Eqs. (21) and (22) and not
the social welfare of the local community. In comparison to
existing clustering algorithms, the proposed clustering algo-
rithm provides opportunity for the LEM operator managing
the local market to give more importance to certain pro-
sumers preferences that is more importance to the prosumers.
Furthermore, the algorithm converges faster in lesser time
when compared to the traditional clustering algorithms like
K-means clustering.

V. SIMULATION SET-UP
A. SIMULATION FRAMEWORK
The proposed LEM advanced clustering model is developed
as a Python code and implemented by integrating with the
open-source Grid Singularity Exchange (GSy-E) [35], [48],
[49] and bidding agent application programming interface
(API) as represented in Fig. 5. Each consumer and prosumer
is represented by a bidding/offering agent which communi-
cates their bids and offers/bids, respectively, to the exchange
engine. The exchange engine is responsible for (i) receiving
the bids/offers from the bidding/offering agents of the pro-
sumers, (ii) storing them in the ordered book, and (iii) sending
them for onward clearing by the matching API. The matching
API is responsible for matching the bids/offers among pro-
sumer agents using the proposed advanced clustering model
developed in this work. All unmatched bids and offers are
transacted with the up-stream grid agent using the upstream
grid price. In other words, any offer and bid of prosumers
which is not matched with other prosumers in the energy
community is traded with the up-stream grid. In our simula-
tion model, each prosumer communicates their bids or offers
individually to the exchange engine every 15 minutes time
slot before the energy exchange time. Afterward, the results
from the matching API is sent back to individual prosumers.

B. COMMUNITY SET-UP AND DATA
The proposed P2P LEM approach is verified in two simula-
tion case studies for a period of one day. Case study I is a
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FIGURE 5. Flowchart of simulation framework for proposed model.

community with 25 prosumers consisting of 15 households
with only consumption devices and 10 households with con-
sumption and production devices. Case study II is a commu-
nity with 120 prosumers consisting of 68 households con-
sumers, 4 commercial consumers, 7 commercial prosumers,
6 industrial prosumers and 35 household prosumers. For both
case studies, the load profiles are combinations of profiles
from [50], LoadProfileGenerator [51], [52] and standard load
profiles [53], [54]. These two case studies are chosen to show
an in-depth and clear analysis of the advantage/benefits of
our proposed model using case study I and further prove its
application in a real-case LEM using case study II. Besides,
the PV production profiles are from Renewables Ninja [55],
[56] using Stuttgart region as a community. The PV system
losses are also varied between 5% and 15%with a constant tilt
angle of 35◦. For prosumers with storage systems, the storage
capacities are between 7.5 kWh to 13.5 kWh with maximum
absolute power between 3.5 kW to 5.25 kW. Additionally,
two community storage systems of capacities 140 kWh and
120 kWh, with maximum power of 40 kW are included in
the local community of case study II. The minimum allowed
state of charge for all storage systems is 10%. The profiles are
randomly fitted into a community (Scharnhausen) in Stuttgart
region as shown in Fig. 6(a) and (b) for case studies I and II,
respectively, using the OpenStreet map and QGIS. In this
study, prosumers in the same building like P1, C1 and P2,
are considered to be in the same block. Moreover, prosumers
in the same neighbourhood (street) like P1, P4 and C2 are
considered to be in the same estate, and prosumers in the same

post code (e.g P1, C6, C9 and P3) are considered to be on the
same zone.

The price components of the simulation case studies are
presented in Table 2. The price components of the local
electricity market consist of energy price of the electric-
ity producer, metering fee, local grid fee and 19% Value-
Added-Tax (VAT) [57]. The energy price is the minimum
amount of money (cents/kWh) a seller prosumer is willing
to receive per kWh of electricity produced and traded with
other prosumers. Themetering fee is the surcharge paid by the
consumer for maintaining the metering infrastructure while
the local grid fees are for maintaining the local distribution
grid infrastructure. The VAT is the tax paid for transacting
electricity between prosumers. It is noted that the VAT is 19%
of the sum of energy price, metering, local and up-stream
grid fees. Additionally, the up-stream grid fee is added if
the electricity is traded with the up-stream grid. Because of
the average cost of electricity in Germany, the maximum
cost of electricity which is the cost of buying electricity
from the grid is capped at 31.5 cents/kWh [58]. Moreover,
the minimum cost of electricity is 11.00 ct/kWh which is
the feed-in tariff of PV. Hence, consumers (also prosumers
during bidding) set their preferred bid price between 11.38 to
29.54 ct/kWh, that is the range of total cost for buying energy
within a block. However, prosumers (during offering) set their
preferred offering price between 11 to 24.5 ct/kWh. This is
the range of energy price for selling energy within a block as
shown in Table 2. The range of energy price is between the
feed-in tariff price and the maximum price that prosumers
can sell their energy within the community. Each prosumer
within the LEM has an agent which is a software code that
submit their bidding/offering vectors on their behalf to the
LEM framework. The bidding price is chosen randomly by
the agent within the range provided by the prosumer while the
energy quantity is selected from the consumption/production
profile of the prosumer. The agents on behalf of the prosumers
and consumers can only send one bid or offer per time slot.
Furthermore, electricity which is not traded within the LEM
is exchanged with the up-stream grid at the grid price which
is less profitable compared to trading within the LEM.

VI. RESULTS AND DISCUSSION
A. CASE STUDY I
The analysis and discussion of the simulations results for case
study I are presented in this section.

1) GENERAL ANALYSIS OF SIMULATION RESULTS
To analyze the traded electricity volume and the electricity
exchanged with the upstream grid, the geographic location
and location of the agent in the local community are used as
criteria for initial cluster grouping and hierarchical clustering
chosen metric, respectively. The simulation is analyzed and
presented in this subsection.

Fig. 7 shows the net electricity demand for (a) consumers,
(b) prosumers and (c) the prosumers’ electricity supply for
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FIGURE 6. Geospatial information for (a) case study I and (b) II.

TABLE 2. Price components for sub-communities and with the up-stream grid.

the simulation period. As shown in Figs. 7a and 7b, the peak
demand happens in the morning (around 6:00am) and late
evening (around 8:00pm). This is typical of households as
most people always prepare for their daily activities in the
morning and consequently will need to use their electricity
appliances. Moreover, at late in the evening, most people will
be cooking their dinner, listening to local news, etc. Conse-
quently, the peak electricity demand is obvious. The early
morning peak electricity demand of the prosumer households
is not noticeable in Fig. 7b. This is because the simulation
is conducted for a summer day, and most of the prosumers’
electricity demand in the morning of the simulation day is
covered by the PV production and hence cutting off the
morning peak demand of the prosumers. In addition, the
households show an almost constant electricity demand from
about 11:30pm until 5:00am. This is because most electricity

consumers at this time are asleep and therefore only use their
constant electricity demand appliances such as refrigerators.
FromFig. 7c, net electricity supply starts early in themorning
at around 5:30am with peak generation between 10:00am to
12:30pm, ending at around 4:00pm. This is a typical summer
day, prior to and after this specified time, electricity generated
by the prosumers is used to satisfy the internal demand of the
prosumer households.

Fig. 8 displays the electricity traded within the LEM
for selected (a) consumers (b) prosumers and (c) energy
exchange with the upstream grid for the simulation period.
As shown in Fig. 8, it is evident that electricity trading
happens within the LEMmainly during the net PV production
time. Since the batteries are not internally controlled, the
prosumers that own batteries sell their charged electricity
a few time steps after the PV generation within the LEM
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FIGURE 7. Power demand for (a) Consumers (b) Prosumers and (c) Prosumers’ supply.

has stopped. The stacked area of the prosumers’ (Fig. 8b)
traded energy is bigger compared to the stacked area of the
consumers’ (Fig. 8a) traded energy. This is because pro-
sumers can act as consumers in some time steps. At this
instance, the traded energy between prosumers is recorded
for both prosumers (i.e. prosumers that produce the energy
and those that also consume the energy) thereby increas-
ing the area of Fig. 8b compared to Fig. 8a where two
consumers cannot exchange energy. Fig. 8c displays the
energy imported/exported from/to the upstream grid to/from
the LEM. From Fig. 8c, there is no energy export to the
upstream grid from 12:00am until about 6:00am and from
about 4:00pm until 12:00am. This is because there is no net
PV production at this period. The major electricity import
from the upstream grid also happens at this period. Since
all prosumers within the LEM may not have the same price
preference, some prosumers may not be able to bid the price
that will enable them buy electricity from the LEM. At same
time, some prosumers many not be able to offer the price
that will enable them sell all their electricity at the LEM.
This is the cause of the simultaneous imports and exports
witnessed at some periods around 6:00am until about 4:00pm
in in Fig. 8c. Comparing Figs. 8c and 7a, it is evident that the
peak demand witnessed in Fig. 7a at around 6:30am which is
cut off by the LEM (as shown in Fig. 8c) from 10kW to about
4kW showing about 60% cut off. The peak import (Fig. 8c)
witnessed from around 9:00pm is because of the high demand
from both consumers and prosumers at late evening and there
is no PV production at this time to reduce it.

2) ANALYSIS OF CLUSTERING SCENARIOS
The analysis and discussion of the simulation results for the
different clustering scenarios are presented in this section.

a: CONSTANT CLUSTERING CRITERIA FOR INITIAL CLUSTER
AND HIERARCHICAL CLUSTER CHOSEN METRIC
In this subsection, we analyze the simulation for the constant
clustering scenarios. The same approach is used for both
initial cluster grouping and hierarchical clustering chosen
metric. In this way, four scenarios are introduced based on
location, offering/bidding price, energy quantity, and cluster

welfare. These scenarios are analyzed in terms of how they
affect electricity trading, and the economic and technical
benefits of the LEM. Fig. 9 shows (a) the traded energy,
(b) average trade rate and (c) number of trade per slot for four
clustering scenarios. According to our study, the four clus-
tering scenarios show similar behaviour for traded energy,
average trade rate and number of trades per slot. In the
proposed scenarios, from 12:00am until about 5:00am,
the energy traded within the LEM is zero and consequently,
the average trade rate and the number of trades per slot are
31.5ct/kWh and 0, respectively. At this time, there is no PV
generation and all the electricity is bought from the upstream
grid at a higher price. In the morning, the PVs start generating
and consequently, the traded volume and the number of trades
per slot increase gradually which further results in gradual
decrease in the average trade rate. During the day, as the PVs
are generating electricity, higher volume of energy is traded
within the LEM resulting in higher value of number of trades
per slot and lower value of the average trade rate. On the
other hand, during the evening around 8:00pm, as the sun sets,
the traded volume and the number of trades per slot reduce
gradually to zero. The average trade rate increases in the same
way to 31.5ct/kWh.

Fig. 10 displays the internal traded energy within the LEM,
total energy import and export from/to the upstream grid for
all clustering scenarios. The internal traded energy is the total
energy traded between consumers and prosumers within the
LEM. The energy imported/exported from/to the upstream
grid are known as external energy exchange. As shown in
Fig. 10, the price clustering scenario shows the best perfor-
mance for the internal and external energy exchange com-
pared to other clustering scenarios with location showing
the least. This is evident with the high internal and lower
external energy exchange of the price clustering scenario and
the lower internal and higher external energy exchange of the
location clustering scenario. Higher internal energy exchange
means that more energy is traded within the LEM and hence,
more benefits is expected to be created by this higher trade.
On the other hand, higher external energy exchange means
that most of the trades happens between the prosumers and
the upstream grid, this is expected to create less benefits to the
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FIGURE 8. Electricity traded within the LEM for selected (a) Consumers, (b) Prosumers and (c) exchange with upstream grid.

FIGURE 9. Comparison of (a) traded energy (b) average trade rate and (c)number of trades per slot for constant criteria for initial cluster grouping and
chosen metric.

FIGURE 10. Comparison of internal and external energy exchanged for
constant clustering criteria scenarios.

LEM. The least performance of location clustering scenario
compared to the price clustering scenario is because, although
some consumers and prosumers may be close to each other
and may be clustered to trade electricity, but they will not
trade if the bidding price is less than the offering price. This
way, clustering prosumers and consumers who have the same
price preference range will result in higher matching of bids
and offers within the LEM, thereby creating more internal
energy trade and less energy exchangewith the upstream grid.
The self-sufficiency (SS), self consumption ratio (SC) and
the share of market savings (SMS) for the four clustering
scenarios are shown in Fig. 11. The SMS is the share of

profit made by the local consumers and prosumers for trading
within the LEM compared to when there is no LEM [59].
The SS, SC and SM of the four scenarios share a close range
with each other. However, for all the performance indicators
(SS, SC and SMS), the price based clustering scenario has the
best performance and location has the least. This is because,
the price based clustering scenario provides more internal
traded energy and less external traded energy compared to
other clustering scenarios. Higher internal traded energy and
lower external energy exchange results in higher performance
of the LEM as the LEM does not depend much on the
upstream grid for its energy production/consumption. Hence,
clustering prosumers and consumers, who have the same
price preference range will be more beneficial to the LEM
as most trades will match in this cluster scenario, thereby
increasing the LEM’S performance indicators.

Figs. 12 (a) and (b) show box plots of the net cost of
trading electricity for consumers and prosumers, respectively,
in twelve clustering scenarios (L1 to L12). For the consumers,
Fig. 12a, the mean cost for all the clustering scenarios is
between 2.6 to 2.8 ct./kWh. It is evident that the consumers
are household consumers as this cost is within the range of
the daily electricity cost for a households in Germany and
this correspond to the household data used for the simulation
of this case scenario. The minimum cost is 1.5 ct./kWh and
all the clustering scenarios show the same minimum cost.
However, the maximum cost varies for the different scenarios
with L1, L3,L4, L6, L9 and L10 showing a lesser maximum
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FIGURE 11. Comparison of SS, SC and SMS for constant clustering criteria
scenarios.

TABLE 3. Varied clustering scenarios.

cost value compared to L3, L5, L7, L8, L11 and L12 clus-
tering scenarios. For the prosumers, Fig. 12b, the mean cost
is between −1.8 to −1.6 ct./kWh for all the clustering sce-
narios. Negative mean cost means that the prosumers gained
some monetary value for exchanging their electricity with the
consumers. The maximum net cost of the prosumers is higher
for L3, L4, and L8 compared to other clustering scenarios.
On the other hand, the minimum net cost is lower for L4, L5,
L6 and L7 compared to other clustering scenarios. L6, L7 and
L9 show the best performance because of their lower mean,
maximum, and minimum net cost.

Fig. 13 shows the internal traded energy within the LEM,
total energy import and export from/to the upstream grid in
twelve clustering scenarios (L1 to L12). As seen in Fig. 13,
L4, L5 and L6 scenarios present the best performance for
the internal and external energy exchange compared to other
clustering scenarios with L1, L2 and L10 having the worst
performance. This is evident with the high internal and lower
external energy exchange of the L4, L5 and L6 clustering
scenarios and the lower internal and higher external energy
exchange of the L1, L2 and L10 clustering scenarios. L4,
L5 and L6 have similar cluster criterion for initial cluster
grouping which is the offering/bidding price. This similarity
shows why the three scenarios perform better than the others
in terms of energy exchange within the LEM and upstream
grid. It is also evident that clustering prosumers and con-
sumers who have the same price range based on initial cluster

FIGURE 12. Net cost for (a) Consumers and (b) Prosumers based on
variable clustering criteria scenarios.

grouping will result in higher matching of bids and offers
within the LEM which create more internal energy trade and
less energy exchange with the upstream grid.

Fig. 14 shows the SS, SC and SMS for the clustering
scenarios L1 to L12. The SS, SC and SMS of the twelve sce-
narios L1 to L12 show close range value to each other. How-
ever, for all the performance indicators, the price based initial
cluster criterion’s (L4, L5 and L6) clustering scenarios show
the outstanding performance compared to other scenarios.
The most outstanding clustering scenario is the L6 scenario
which is based on initial grouping of bids and offers based on
bids/offer price and advanced grouping based on location and
cluster welfare. L6 has the highest SS, SC and SM compared
to other clustering scenarios. This is because, the price based
initial cluster grouping scenario providesmore internal traded
energy and less external traded energy compared to other
clustering scenarios. Furthermore, the location and cluster
welfare based criteria for chosen metric ensures that electric-
ity is traded close to where they are consumed and further
create additional welfare to the community. This provides
additional SMS to the LEM.
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FIGURE 13. Comparison of internal and external energy exchanged for
variable clustering criteria scenarios.

FIGURE 14. Comparison of SS, SC and SMS for variable clustering criteria
scenarios.

b: P2P ENERGY TRADE
Fig. 15 shows the P2P energy trade between consumers and
prosumers for the L6 clustering approach. Since the pro-
sumers can act as consumers in some time slots, and con-
sequently buy energy from other prosumers, the prosumers
are further added to the horizontal axis. Comparing Fig. 15
with Fig. 6a shows that P2P energy is traded within the
LEM according to the closest cluster that can be formed
from Fig. 6a. Regions on Fig. 15 where higher quantity of
energy is exchanged represent a particular region or cluster
of household in Fig. 6a where households are close to each
other. An example is the upper most center of Fig. 15 where
higher quantity of energy is exchanged between P8, P9 and
P10 as prosumers (producing) and; C13, C14 and C15 as
consumers. This is evident in Fig. 6a where P8, P9, P10, C13,
C14 andC15 are located in the same estate known asAS-EST.
The higher quantity of energy exchanged between P2 and

P13 is because they belong to the same block, therefore, the
cluster model matches them easily and ensure that electricity
is traded close to where it is produced. In the same way, the
higher quantity of energy exchanged between P10 and C15
is also because they are located in the same block, therefore,
exchanging energy among themwill create additional welfare
to the LEM.

B. CASE STUDY II
In this Section, we analyze the performance of the L6 cluster-
ing scenario with 120 households as described in Section V-B
and varying number of clusters for initial cluster grouping and
compare it with P2P matching where there is no clustering.

1) ENERGY EXCHANGE FOR VARYING NUMBER OF
CLUSTERS
Fig. 16 displays the internal and external energy exchange
for varying number of clusters. The external energy exchange
are the energy export and import to/from the upstream grid.
As shown in Fig. 16, the total energy exchange, that is the
sum of the internal and external energy exchange, is con-
stant for all the simulation scenarios. This is evident that the
total energy requirements of the local community is constant
throughout the simulations. Furthermore, the P2P match-
ing model without advanced clustering scenario has higher
external and lower internal energy exchange compared to all
other scenarios. Higher external and lower internal energy
exchange results in LEM depending totally on the upstream
grid and impacts the LEM participants negatively. Moreover,
increasing the number of clusters for initial cluster group-
ing increases the internal energy exchange and reduces the
external energy exchange of the LEM. For the case scenario
studied in this work, the simulation achieved its optimum
when the number of clusters is four, therefore, increasing
the numbers of clusters beyond four has no impact on the
performance of the LEM. Based on the L6 advanced cluster-
ing approach, the number of initial cluster groups where the
LEM reaches its optimum depends on the individual bidding
strategies and location of the LEM participants on the local
grid.

2) ECONOMIC AND TECHNICAL BENEFITS FOR VARYING
NUMBER OF CLUSTERS
Fig. 17 displays the SS, SC and SMS for varying number
of initial cluster groups. The P2P matching model without
advanced clustering scenario has lower SS, SC and SMS com-
pared to all other scenarios. This is because, the P2Pmatching
model without clustering scenario has more external energy
exchange and lower internal energy exchange compared to
all other scenarios, making the LEM less beneficial to the
local markets participants. Also, increasing the number of
clusters for initial cluster groups increases the SS, SC and
the SMS of the local community. This is because, increasing
the number of clusters for initial cluster groups reduces the
external energy and increases the internal energy exchange
of the LEM and thereby creating additional benefits to the
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FIGURE 15. P2P energy trade for L6 clustering approach.

FIGURE 16. Comparison of energy exchange for variable number of
clusters.

local community. The optimum SS, SC and SMS is achieved
when the number of initial cluster groups is four. This is the
same for internal and external energy exchange of the LEM.
This is evidence that the technical and economic benefits of
the local community depend on the energy exchange between
the community and the upstream grid.

3) TIME COMPLEXITY
The proposed clustering algorithm takes less than 1 seconds
to solve a given problem in an Ubuntu operating system
computer. This means running the model only, without a
market framework such as GSy-exchange. Running it with a
market framework takes more time as simulation data needs
to be stored and read from different files. Table 4 shows the
average simulation computational time per slot to complete
the matching in the GSy-exchange matching API for varying
number of clusters. The P2P matching mechanism without
clustering has the least computational time per slot compared
to all other scenarios. This is because the P2P matching
mechanism without clustering is a simple random matching
and has no clustering model. With the smallest number of

FIGURE 17. Comparison of SS, SC and SMS for variable number of
clusters.

TABLE 4. Average computational time per time slot for varying number of
clusters.

clusters which is 2, the run time is 22.55 seconds per slot
for a community of 120 prosumers. Increasing the number
of initial cluster groups increases the computational time.
This is because increasing the number of clusters will require
more time for k-means clustering to determine the individual
cluster centroids, additionally, it will require more time for
advanced clustering to build up the hierarchical model as
there will be a greater number of branches from the initial
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cluster groups. Also, comparing the average computational
time of our model with that of a multi-layer LEM model
proposed in [48], where a similar community was simulated
with the Grid Singularity platform shows that our proposed
model has the capability of reducing the average computa-
tional time by half when the number of clusters is less than 5.
However, with large number of clusters, it may takemore time
for the algorithm to complete its calculation and matching.
For our simulation case scenario, our model achieved its
optimum when the number of clusters is four as discussed
in Sections VI-B1 and VI-B2, this is evidence that the model
is computational efficient when compared to previous works
already published in the same area.

VII. CONCLUSION
In this paper, an advanced clustering algorithm was proposed
for P2P matching in the energy community considering the
heterogeneous characteristics of bidding preferences for pro-
sumers consisting of geographic location, location on the
local community, bid/offer price, bid/offer quantity, and clus-
ter welfare. The proposed model was tested in a German
real-case scenario and simulated for 120 German households.
The simulations results show that the model was able to
leverage the preference opportunity to ensure that electricity
was traded and consumed closer to where it is produced in a
P2P trading structure. Thereby, reducing the peak demand of
the local community, increasing the traded energy at the local
community, and reducing the energy exchange of the local
community and the upstream grid. Also, the model benefit
the local prosumers as it can help to increase the share of
market saving, self consumption and self sufficiency of the
prosumers. By ensuring that energy is traded closer to where
is is produced, the model further increase the local economy
of the local prosumers.

Furthermore, in the proposed advanced clustering model,
using price preference as the criterion for initial cluster group-
ing, and location of the prosumers in the community and clus-
ter welfare as the criteria for the chosenweightmetric, offered
more technical and economic benefits to the local community
compared to other clustering scenarios. Also, comparing our
proposed model with a P2P model without clustering shows
that the computational time of both models are closer in
range and hence our model can be easily adopted without
increasing the market computational time. In future work,
we will investigate how reinforcement learning can be used
by the prosumers to intelligently decide their bidding/offering
preference and how the model will be implemented in a dis-
tributed blockchain platform to ensure efficient preservation
of prosumers’ privacy and conformation to data protection
laws.
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